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Abstract

This literature review presents a comprehensive overview of machine learn-

ing (ML) applications in proton magnetic resonance spectroscopy (MRS).

As the use of ML techniques in MRS continues to grow, this review aims

to provide the MRS community with a structured overview of the state-of-

the-art methods. Specifically, we examine and summarize studies published

between 2017 and 2023 from major journals in the magnetic resonance

field. We categorize these studies based on a typical MRS workflow, includ-

ing data acquisition, processing, analysis, and artificial data generation.

Our review reveals that ML in MRS is still in its early stages, with a

primary focus on processing and analysis techniques, and less attention

given to data acquisition. We also found that many studies use similar

model architectures, with little comparison to alternative architectures.

Additionally, the generation of artificial data is a crucial topic, with no

consistent method for its generation. Furthermore, many studies demon-

strate that artificial data suffers from generalization issues when tested on

in-vivo data. We also conclude that risks related to ML models should be

addressed, particularly for clinical applications. Therefore, output uncer-

tainty measures and model biases are critical to investigate. Nonetheless,

the rapid development of ML in MRS and the promising results from the

reviewed studies justify further research in this field.
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1 INTRODUCTION

Magnetic resonance spectroscopy (MRS) and magnetic

resonance spectroscopic imaging (MRSI) are non-invasive

*Equally contributing authors

methods for investigating the chemical and structural

properties of molecules in-vivo. These techniques are

widely used for measuring human metabolism, partic-

ularly in the areas of neural diseases, tumor detection,

and monitoring1,2,3. While MRS and MRSI have the

potential to be highly valuable in clinical practice, they
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2

pose several challenges such as low signal-to-noise ratio

(SNR), overlapping metabolite signals, experimental arti-

facts, and long acquisition times. To effectively analyze

spectroscopy data, various considerations such as pulse

sequence selection4, B0 shimming5, as well as preprocess-

ing and analysis methods6,7 must be taken into account.

Due to the complexity of these considerations, MRS and

MRSI can be challenging techniques for non-experts to

implement and oversee, hindering clinical adoption3.

The ability to learn model-agnostic features from data

has made machine learning (ML) methods very popu-

lar in many disciplines over the last decade. In magnetic

resonance imaging (MRI) the use of ML techniques, for

example, has increasingly found a wide range of applica-

tions ranging from image reconstruction8,9,10 and quality

improvement11 to image analysis12 and clinical diagnos-

tics13,14,15,16. This trend has started to increase in MRS

and MRSI as well, with various ML methods being pro-

posed to address some of the associated challenges. In

the work of Chen et al.17 a sparse collection of such deep

learning (DL)-based approaches is summarized. The work

covers nine application examples in the domains of spec-

tral reconstruction and denoising of proton MRS as well as

chemical shift prediction and automated peak-picking for

proton and other nuclear magnetic resonance (NMR) spec-

troscopy. Another review by Rajeev et al.18 focuses on the

clinical diagnosis of brain tumors from magnetic resonance

(MR) spectra using DL methods. The study condenses

twenty data-driven approaches designed to improve the

MRS workflow and consequently improve tumor diag-

nosis. However, an exhaustive collection of recent ML

applications in MRS is still missing. Furthermore, these

previous reviews do not show where the discussed ML

studies fit into the MRS workflow, which inhibits better

insight into the application domain. Moreover, with con-

tinuously emerging techniques in ML19,20,21, the urgency

for a thorough documentation of ML developments in

MRS has grown persistently.

In this review we aim to bridge the gap between spe-

cific knowledge of the MRS workflow, from acquisition to

clinical applications, and the technicalities of ML meth-

ods. Comprehensive and assessable summaries of recent

ML studies are provided, based on their organization

within common workflows of proton MRS. We discuss

and summarize architectures, input and output schemes,

training strategies, and the intended application for a

selection of studies.
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NatureMed Phys.
Search Query
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ML applications 1H NMR
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FIGURE 1 An outline of the systematic literature search.

At start, the language and time period are set before a filter

is applied for the selected sources. The Scopus search query

results in a selection of publications which are manually

checked on the exclusion criteria. After including additional

sources, the final selection is obtained. The amount of papers

after each step is indicated with n.

1.1 Literature Search

The literature search is conducted based on the systematic

process outlined in Figure 1 . To ensure a comprehen-

sive overview, we focus on state-of-the-art ML studies of

the last seven years, as they hold the most relevance for

current developments within the field. Using Elsevier’s

Scopus database the search is narrowed to studies pub-

lished between and including January 2017 and April

2023 in major journals in the field of MR. By determining

a specific query to search in title, keywords, and abstract

for specific keywords related to MRS, MRSI, ML, DL,

and neural networks (NNs) the search is further limited to

191 studies. Literature is excluded if it primarily focuses

on other modalities than MRS and MRSI or do not men-

tion ML applications. The final selection is obtained after

investigating the references of the found literature and

a final search using other search engines. Additional lit-

erature from other sources is added if their content fits

within the scope. Table 1 provides an overview of the

final 37 papers, covered in this review.

1.2 MRS Workflow

This review is structured following a common MRS and

MRSI workflow 7,59. This workflow is applicable for clin-

ical and research purposes and is divided into three main

parts: data acquisition, processing, and analysis.

Data acquisition includes all the necessary steps

for acquiring raw MRS or MRSI data, such as pulse

sequence design, voxel placement, and B0 shimming. The

processing step involves techniques that reduce the dimen-

sionality of the data, remove spectral imperfections, or
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4

improve the visual appearance of the spectra. Some exam-

ples include signal averaging, eddy current correction,

residual water/lipid removal, motion correction, apodiza-

tion, and zero-filling. The analysis step involves using the

processed data to evaluate its quality, quantify it with

uncertainty, or classify it by specific characteristics such

as disease. ML can be applied at each step of this workflow

to perform or improve specific tasks. Additionally, some

ML applications may require the use of artificial data for

training, because there is a lack of large open databases.

Since ML methods are highly dependent on the training

data, artificial data generation is added as a workflow

category. Figure 2 provides a schematic overview of the

workflow, highlighting the use of ML at each step.

Artificial Data 
GenerationData Acquisition

Processing

Analysis

Volume Selection

Shimming

Reconstruction

Frequency & Phase Correction

Ghosting Artifact Removal

General Artifact Removal

Quality Assurance

Quantification

Uncertainty Measurement 

ML Applications

Spectral Denoising

Super-Resolution MRSI

Classification

FIGURE 2 Schematic overview of the overall MRS and

MRSI workflow with corresponding ML applications. The

dashed arrows indicate a possibility to include artificial data

into the development of some ML applications.

This review does not contain any introduction to ML

methodology. For a comprehensive overview of ML, DL,

and general artificial intelligence (AI) techniques we refer

the reader to the alternative sources60,61,62. Schematic

examples of some DL model types that are seen in Table

1 , are shown in Figure 3 . Additionally, we refer to

alternative sources for principles and explanations of MRS

concepts59,63.

The structure of this review is as follows: in Section

2, relevant ML studies on data acquisition in the context

of MRS and MRSI are summarized and discussed. In

Sections 3 and 4 the same is done for processing and

analysis respectively. Section 5 briefly discusses artificial

data generation and in Section 6 an overall conclusion and

outlook on the use of ML in MRS and MRSI is provided.

2 DATA ACQUISITION

During data acquisition, scan-configuration parameters

need to be optimized to get the desired and optimal data

output. In this section some ML-based data acquisition

methods are summarized and discussed.

2.1 Volume Selection

Voxel placement in single voxel spectroscopy (SVS) is

critical to limit partial volume effects, especially for

the analysis of brain tumors. Bolan et al.22 propose

an algorithm for automated voxel placement. They use

a dataset of 60 low grade glioma patients containing

T2w fluid-attenuated inversion recovery (FLAIR) images

and corresponding MRS voxels manually placed by an

expert spectroscopist. Lesion masks are retrospectively

annotated by an experienced neurooncologist to have a

gold-standard for training. The first step in their method

involves tumor segmentation using a pre-trained CNN

model that is fine-tuned with their own dataset. The

obtained segmentation volumes are used to maximize

an objective function that describes the placement of a

cuboid voxel in terms of position, size and rotation angle.

This function captures two main considerations: voxel

size and lesion fraction. Evaluation is done by comparing

the lesion fraction, the volume of intersection between the

annotated lesion and the MRS voxel, and the total voxel

size between manually and automatically placed voxels.

The authors found that the proposed automatic place-

ment method has a higher lesion fraction compared to

manually placed voxels. Moreover, their method demon-

strates more consistent placement with lower standard

deviations for lesion fraction, volume of intersection, and

voxel size.

2.2 Shimming

Performing B0 shimming is important to obtain useful

and high-quality MRS data5. To accelerate and automate

the shimming process, Becker et al.23 proposes a DL-

based method for shimming. The used dataset contains

raw 1H-FID signals with shim offsets, in which only linear

shims in orthogonal X,Y and Z directions are considered.

The DL method aims to predict shim values for the X,Y ,

and Z directions based on the one dimensional (1D) spec-

tra of the linear shim offsets. They use an ensemble model

architecture consisting of heterogeneous weak learners

that are combined by either averaging, a fully connected

layer, or a MLP. Results show that both a single weak

learner and the ensemble model with a MLP are able to

predict shim values that improve spectral quality. These

models are also used in combination with the downhill

simplex method64, which is well-established for auto-

matic shimming. They found that using their models, as

stand-alone or in combination with this simplex method,
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0.2

1.4

1.2

Convolution

Fully Connected Layer

Output Layer

(a) Convolutional neural network (CNN) model type.

1.4

1.2

Input Layer

Output Layer

Hidden Layer

(b) Multi-layer perceptron (MLP) model type.

Skip-Connection
Convolution + MaxPool
Up-Sample + Convolution
Convolution

LRSI HRSI

(c) U-Net model type.

Latent Vector

Encoder Decoder

(d) Autoencoder model type.

LSTM
Block

𝒉𝒉𝒕𝒕

Input Layer Hidden Layer

𝒙𝒙𝒕𝒕

(e) Long short-term memory (LSTM) model type.

Real Dataset

Real/
FakeRandom 

Input

Discriminator

Generator

(f) Generative adversarial network (GAN) model type.

FIGURE 3 Overview of the most commonly used model types that are discussed in this review. In 3 a a CNN architecture is

visualized which takes a spectrum as input and outputs scalar values (i.e. metabolite concentrations). In 3 b a MLP is

visualized with an arbitrary number of nodes. In 3 c a U-Net model is visualized which performs super-resolution with a low

resolution spectroscopic imaging (LRSI) image as input and a high resolution spectroscopic imaging (HRSI) image as output.

In 3 d a general autoencoder is visualized which aims to reconstruct the input spectrum in the output. In 3 e a LSTM model

is visualized which takes a (time) sequence input and uses feedback connections to calculate the next hidden layer. Variables xt

and ht indicate the sequence value and hidden state at timestep t respectively. In 3 f a GAN model is visualized that generates

artificial spectra using a generator and includes a discriminator to determine whether a spectrum is real or fake.

results in either a reduction in the number of acquisitions

necessary or an improvement in spectral quality.

In a follow-up study, Becker et al.24 extend their pre-

vious work by incorporating a higher order shim (Z2)

and a different NN architecture in their study. The pro-

posed architecture uses a CNN combined with a LSTM

block in order to mimic a signal-based shimming tech-

nique where the previously obtained states, in the form of

a 1D spectrum and a shim offset, are used in the process.

The value of the shim offsets are dependent on the time

step during training. First, a number of random steps are

taken followed by a series of predictive steps for which

the input shim offsets are the previously obtained values.

The results show that using DL methods, with or with-

out traditional optimization algorithms, is more effective

than using traditional optimization alone.

3 PROCESSING

Raw MRS and MRSI measurements require a multi-

tude of processing steps to obtain interpretable signals.

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106



6

Commonly recommended steps for MRS include coil

combination, signal averaging, motion correction, eddy

current correction, frequency and phase correction (FPC),

and identification of spurious echoes7.The following

sections present and summarize ML studies that have

shown to improve and replace such existing processing

methods.

3.1 Reconstruction

Efficient sampling and reconstruction techniques play an

important role in accelerating MRS and MRSI methods.

When the data is highly under-sampled, reconstruct-

ing spectra from truncated free induction decays (FIDs)

creates truncation artifacts. Lee et al.26 propose and

compare three different reconstruction approaches with

identically designed U-Net65 architectures. The networks

differ based on their inputs and outputs, which are either

completely in the time domain, completely in the fre-

quency domain, or mixed (FID in, spectrum out). In-vivo

9.4T rat brain spectra are acquired to test the approaches

as well as extract knowledge of the present SNR and

linewidth values. Training data is obtained using a basis

set simulation for 17 metabolites. The results show that

the U-Net operating purely in the frequency domain has

the best performance in terms of lowest normalized mean

squared error (NMSE) and highest Pearson correlation

coefficient (for the simulated data). The following obser-

vations are made with the simulated data: for 8 and 16

retained points (out of 1024) the U-Net recovers spec-

tra with substantial truncation artifacts; for 32 and 64

retained points the approach manages to recover spectra

with minor residuals; for 128 (and upwards) the trunca-

tion artifacts are well suppressed by the NN, enabling

precise quantification.

In addition to 1D SVS there are two dimensional

(2D) MRS techniques, such as the localized correlated

spectroscopy (L-COSY) experiment66. Despite the long

acquisition time for L-COSY, it can aid in distinguish-

ing overlapping metabolites. Luo et al.27 introduce an

encoder-decoder network architecture for fast reconstruc-

tion of non-uniformly sampled (NUS) L-COSY spectra

by learning to predict fully-sampled spectra from under-

sampled input spectra. They propose to use simulated

training data generated by the mode of virtual echo67,

where the under-sampled spectra are obtained by expo-

nential and Poisson-gap sampling. This method is found

to have fewer reconstruction artifacts and better peak

preservation compared to other architectures such as

CNN and U-Net. It is also further evaluated with

multi-nuclei spectra and found to have similar reconstruc-

tion quality compared to an iterative soft thresholding

approach68 as well as sparse multidimensional iterative

lineshape-enhanced (SMILE) reconstruction69.

To accelerate L-COSY experiments, Iqbal et al.28 pro-

pose a U-Net model to reconstruct fully-sampled spectra

using NUS spectra as an input. They test their approach

on simulated L-COSY spectra with exponential sampling.

Results suggest that the U-Net architecture not only

produces good quality spectra for all tested acceleration

factors (1.3×, 2×, and 4×), but also outperforms the

compressed-sensing results of an L1-norm minimization

method for the higher acceleration factors.

Various acceleration techniques have been explored for

MRSI70,71, mainly through under-sampling of the k-space

and reconstruction using compressed-sensing or parallel

imaging techniques72,73,74. Nassirpour et al.25 propose

to improve the conventional generalized autocalibrating

partial parallel acquisition (GRAPPA) reconstruction73

by estimating k-space weightings with multiple NNs to

reduce lipid aliasing. They train two types of single-

layer NNs to predict the missing data points; one for

cross-neighbors and one for adjacent neighbors. Dur-

ing reconstruction, the two network types are deployed

sequentially in such a way that first the cross-neighbor

NNs fill in the missing k-space values and then the

adjacent-neighbor NNs estimate the remaining points.

Additionally, the authors propose variable density under-

sampling schemes to achieve even higher acceleration

factors and alter their ML framework by first using 2-

voxel cross-neighbor and adjacent-neighbor NNs before

using the previously mentioned 1-voxel neighbor NNs.

Although in this work the networks are trained in a

subject-specific manner, various strategies are investi-

gated in 30 to improve this approach with more samples.

The results suggest the use of NNs for GRAPPA recon-

struction reduces aliasing artifacts thereby positively

impacting metabolite concentration maps and signifi-

cantly boosting the performance compared to regular

GRAPPA.

Furthermore, Motyka et al.29 proposes a k-space-

based coil combination using geometric DL to reduce the

amount of processing data immediately after the acqui-

sition instead of reducing the data in the image domain.

Their approach utilizes a shallow-graph NN75 to learn

the k-space representation of the MRSI data before the

summation step of the coil combination. In-vivo data are

augmented for training and pairs consisting of input and

desired output for each partition encoding step and each

FID point are created. Additionally, white Gaussian noise

is added to the training samples to increase the robustness

of the method. The proposed method is compared to the

conventional image-based coil combination iMUSICAL76.

For both approaches, the metabolite concentration maps

are similar to the Cramér-Rao lower bound percentage
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values (CRLB%s) of LCModel77. The proposed method

performs comparable to iMUSICAL when evaluated for

different SNRs levels, slightly under-performing for high

SNR domains.

3.2 Spectral Denoising

SVS acquisition time linearly depends on the number of

signal averages which are obtained to enhance the SNR.

Learning the mapping between low number of signal aver-

ages (NSA) spectra to high NSA spectra can effectively

denoise and improve the SNR of the MRS signal.

Lei et al.31 propose an autoencoder model to denoise

MRS spectra. For that purpose they acquire multiple

phantom and in-vivo spectra with a NSA of 192 and of 8,

representing high and low SNR. The proposed network

consists of an encoder-decoder architecture, taking the

processed low NSA spectra as the input in the frequency

domain and outputting high NSA spectra with reduced

noise. To enlarge the data variability a patch-based input

is used in combination with data augmentation. The

network is optimized using the mean squared error (MSE)

of the output spectra and the ground truth (GT) high

SNR spectra including a L1-norm on the hidden feature

vector to enforce sparsity. SNR estimates of the input and

output spectra show an SNR improvement of 40% and

47% for phantom and in-vivo data, respectively, showing

potential to accelerate MRS acquisitions by acquiring low

NSA spectra while maintaining spectral quality.

3.3 Super-Resolution MRSI

Long acquisition times and high field strengths are often

necessary to obtain high resolution spectroscopic imag-

ing (HRSI) data. Advanced post-processing methods to

increase the resolution for low resolution spectroscopic

imaging (LRSI) data can be beneficial for reaching the

desired resolution. Iqbal et al.32 propose a supervised DL

method for super-resolution of MRSI data. They propose

a U-Net architecture to take a T1w image and correspond-

ing LRSI image as inputs and produce a HRSI image as

output. In total, three different U-Nets are trained for

three different LRSI resolutions (16x16, 24x24 and 32x32).

They use synthetic data, generated by a MRSI simulator,

for training and testing. This generator produces T1w

images and a pair of LRSI and HRSI data. The synthetic

data is used to evaluate the trained models based on the

MSE of the HRSI reconstructions and the reconstruction

of individual spectra at different resolutions. Addition-

ally, the models are tested on downsampled in-vivo HRSI

data. During evaluation, different noise levels are tested

and a comparison is performed with standard methods

like zero-filling and bicubic interpolation. Results show

that the DL method performs better than standard meth-

ods for all noise levels and can be used as a denoising or

acceleration method.

In a follow-up study, Dong et al.33 propose another

super-resolution model which included in-vivo MRI and

MRSI data. A dataset of HRSI (64×64) data is acquired

and down-sampled to obtain LRSI (16×16) data. In

total, 320 metabolic maps from 3 different patients

are used as GT. The DL method consists of a U-Net

with four different input modalities: LRSI data, T1-

weighted images, FLAIR images and contrast-enhanced

T1-weighted images. The decoding part of the network

uses spatial attention modules which automatically calcu-

late spatial weight maps to focus on important features

in each input modality. The HRSI output is used to cal-

culate the loss function, which consists of three different

parts. The first part is a pixelwise MSE loss, calculated

by comparing the output with the GT data. To account

for inter-pixel correlations, a second term called the multi-

scale structural similarity index (MS-SSIM) is added.

The MS-SSIM measures the similarity between two dif-

ferent images at multiple scales in terms of luminance,

contrast and structure. Finally, a discriminator is added

to calculate an adversarial loss and capture more com-

plex features. This study investigates the contribution of

all different loss terms and input modalities by training

multiple models. Results show that including all aforemen-

tioned inputs and losses achieves the best performance,

also out-performing standard bi-cubic interpolation.

3.4 Frequency & Phase Correction

FPC is necessary to reduce the effects of scanner frequency

drifts, subject motion, or other inconsistencies to ensure

reliable quantification without line broadening or loss in

SNR. This is especially crucial in J-difference edited MRS

spectra which rely on accurately subtracting two aligned

spectra.

Tapper et al.34 propose an automated FPC framework

consisting of two separate NNs. A simulated dataset set

is obtained using ideal excitation/refocusing pulses and

shaped editing pulses. The simulation parameters are cho-

sen to match the in-vivo data (Big GABA repository78)

as close as possible. Both corrections are implemented

with two sequentially placed fully connected NNs, where

the frequency shifts are estimated first, followed by an

estimation of the phase offsets. Both models are trained

individually taking the magnitude or real-only spectra,

respectively, as the input to predict the frequency or phase

offsets. Results for simulated test data show accurate

predictions with a mean frequency offset error reported
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8

at 0.00 ± 0.03 Hz and a mean phase offset error of

−0.11± 0.25 degrees. Evaluation with in-vivo data shows

similar performance to a model-based spectral registra-

tion (SR) method79, however, they indicate a substantial

performance degradation compared to the simulated data.

Based on this work, Ma et al.35 propose an alternative

DL approach for FPC using CNN architectures. They use

identical parameter configurations to simulate MEGA-

point resolved spectroscopy (PRESS) data for training

and validation. However, they create additional spectra

with lower SNRs by adding Gaussian noise. The authors

observe less subtraction artifacts with the CNN and show

an overall better performance than the approach of Tap-

per et al.34. For the simulated data the authors report a

mean frequency offset error of 0.02±0.02 Hz for the MLP

and 0.01± 0.01 Hz for the CNN, and a mean phase offset

error of 0.19± 0.17 degree for the MLP and 0.12± 0.09

degree for the CNN. For the in-vivo scenarios, perfor-

mance is measured based on the variance of the choline

metabolite of the spectra subtraction. The CNN performs

better in 66.67% , 60.61%, and 75.76% of the 33 datasets,

when small, medium, and large offsets are added to the

data, respectively.

Shamaei at al.36 develop unsupervised methods for

FPC including two different convolutional encoder-model

decoder (CEMD) models in which the input spectra are

used as targets during training. One model focuses on

reference peak fitting of creatine (Cr) and uses a convo-

lutional encoder to construct a lower dimensional latent

representation of the input. The latent parameters are

used as input for a Lorentzian lineshape model decoder.

The second CEMD model uses the same encoder, but

a SR function is used as decoder. To account for unsta-

ble frequency components, both models are also trained

for a limited frequency range (2.5 to 3.5 ppm). Train-

ing and validation is done on a simulated dataset with

known frequency and phase offsets and evaluation is done

on phantom data and in-vivo data from the Big GABA

repository. The proposed unsupervised methods are com-

pared with commonly used FPC methods (SR and Cr

referencing, both on full and limited frequency ranges)

and previous DL methods34,35. In contrast to the non-DL

FPC methods, the CEMD models perform equally well

when trained and applied on a limited frequency range

and their performance is less influenced by the presence of

nuisance peaks. Compared to the previous DL methods,

the CEMD is able to train in an unsupervised fashion

and requires only one network for both frequency and

phase correction.

3.5 Ghosting Artifact Removal

Ghosting artifacts, or so-called spurious echos, are usu-

ally caused by insufficient spoiling gradient power in

combination with local susceptibility variations. These

artifacts negatively influence the reliability of metabolite

quantification as they may overlap with metabolite peaks.

Kyathanahally et al.37 evaluate two networks based on

fully connected NNs and CNNs for the detection as well

as an autoencoder network with residual blocks for the

removal of ghosting artifacts. Brain metabolite spectra

are simulated for ideal PRESS characteristics, and ghost-

ing artifacts with varying line-widths and amplitudes are

added randomly. The fully connected NN is trained on

1D spectra as input and class probabilities as output.

An alternative classification approach is implemented

with a CNN, taking the real and imaginary part of a 2D

spectrogram as input. The spectrograms are obtained by

segmenting the time domain signals followed by a Fourier

transform of each segment, creating 2D time-frequency

spectrograms. To effectively remove the ghosting arti-

facts, an autoencoder network is implemented, taking

the 2D corrupted spectrograms as input and outputting

artifact-free spectrograms. The authors report a classi-

fication accuracy between 50% and 75% for the fully

connected NN depending on the number of layers. In con-

trast, the CNN approach shows promising performance

with a mean accuracy of 94% for smaller datasets and an

accuracy of over 99% for larger training sets and subse-

quent in-vivo evaluations. In addition, the autoencoder

method is found to be effective in removing ghost arti-

facts from distorted spectra, with low root mean squared

error (RMSE) reported for the difference between ground

truth and restored spectra in simulated data. However,

the restoration is found to be suboptimal for in-vivo cases.

3.6 General Artifact Removal

The previously discussed methods all focus on a specific

processing step, yet NNs have the ability to learn more

complex mappings from training data, enabling multiple

artifact corrections at once. Lee and Kim38 propose a

CNN architecture taking spectra contaminated with arti-

facts as input and predicting noise-free, metabolite-only

spectra. The NN is trained using simulated data with

metabolite phantom spectra as a basis set and knowledge

of in-vivo data for specific linewidth, SNR, and base-

line ranges. Further, in-vivo test data is obtained from

five healthy volunteers with identical scanner settings

used for the phantom spectra of the basis set. For both

simulated and in-vivo data, the CNN clearly manages

to obtain spectra with removed noise, narrow linewidth,
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removed frequency and phase shifts, and without spec-

tral baseline. The results show no visible residual signal

and thus suggest good removal of artifacts only in the

simulated scenario. Further, the reported mean absolute

percent error (MAPE) of the quantification estimates and

the GTs concentrations is 20.67%± 16.71%. For the in-

vivo spectra the results of the proposed method coincide

with estimates of LCModel as well as commonly reported

metabolite concentrations from the literature.

4 ANALYSIS

The MRS analysis focuses on converting the (processed)

signals into meaningful and reliable metabolite concen-

tration estimates. The following subsections summarize

recent ML applications for spectral quality assurance,

metabolite quantification, uncertainty measurement, and

classification.

4.1 Quality Assurance

MRS and MRSI methods are susceptible to various imper-

fections causing artifacts in the acquired spectra which in

turn can create unreliable and inaccurate measurements.

This is limiting the clinical use of MRS and causes a

dependence on technical experts to inspect the spectral

quality.

De Barros et al.39 introduce an active learning method

to improve labeling efficiency based on spectral quality by

either accepting or rejecting spectra for further analysis.

The method uses a dataset of over 28,000 in-vivo spec-

tra from brain tumor patients. Forty-seven features are

extracted from the time-domain and frequency-domain

magnitude spectra and are used as input for a random for-

est (RDF) classifier. Two expert spectroscopists manually

label the spectra to provide GT for supervised train-

ing. The active learning strategy employs an uncertainty

range defined as [0.5− α, 0.5 + α], where α controls the

width. When the RDF classifier’s output falls within this

range, the uncertain data instance is added to the training

set. This active learning method is evaluated iteratively,

where in each iteration spectra from one patient are eval-

uated and uncertain examples are added to the training

set. After retraining, the RDF classifier is validated on

one patient (leave-one-out-cross-validation). Results show

insignificant or minor differences in classification perfor-

mance between different values for α (0.1 ≤ α ≤ 0.5),

resulting in an efficient way of training a RDF classifier

with fewer manual labeling.

Gurbani et al.40 propose a CNN architecture to auto-

matically classify the quality of a given spectrum and

integrate it into a software pipeline enabling real-time

filtering of echo-planar spectroscopic imaging (EPSI)

data. In-vivo spectra from patients with glioblastoma are

collected after appropriate filtering. These spectra are

then reviewed by MRS experts and classified as ”Good”,

”Acceptable”, or ”Poor” quality to obtain GT labels for

the NN. The CNN architecture takes the normalized real

component of the spectrum as input and splits it into

six specific regions, each with its own designated CNN.

These CNNs are trained in parallel by passing their con-

catenated outputs through a MLP of which the output

represents the probability to be classified as ”Good”. The

overall model performs well in terms of detecting ”Poor”

quality spectra with an area under the curve (AUC) of

0.951.

Kyathanahally et al.41 evaluate various ML

approaches for fast quality classification of MR spec-

tra. The authors perform training and testing on the

multi-center studies INTERPRET80 and eTUMOUR81

consisting of more than 1000 spectra, mostly already

classified into good and bad quality. Furthermore, they

create an intermediate class for ”Poor” quality if one of

the three experts thought the spectrum was acceptable,

and they also create their own local expert ratings for

some previously unlabeled data. The authors evaluate var-

ious classifiers based on support vector machines (SVMs),

linear discriminant analysis (LDA), and random under-

sampling and boosting (RUSBoost) in combination with

independent component analysis (ICA) and principal

component analysis (PCA) or sequential forward fea-

ture selection (SFFS) and bootstrap-aggregated decision

trees (TreeBagger) as feature extraction or feature selec-

tion methods. Their final approach uses a high number of

features as input and a RUSBoost classifier that under-

samples to combat the imbalanced training data, showing

a comparable performance in rejecting unsuitable spectra

to a human expert.

Hernández-Villegas et al.43 propose a convex non-

negative matrix factorization (CNMF) for the same

multi-center studies used in41 to distinguish between

good and poor quality spectra. The method first itera-

tively factorizes observations into a source matrix (of data

centroids) and a mixing matrix (containing combination

weights). Then, two experts define quality measures based

on correlation and Euclidean distance of the extracted

sources of 10 repetitions as well as based on the coding

coefficient of the mixing matrices. Thereby, spectral qual-

ity can be assessed and characterized in an unsupervised

fashion. The obtained results indicate that the defined

quality measures can identify sources containing artifacts

and the approach manages to distinguish between good

and poor-quality spectra.

Jang et al.42 train a GAN to detect abnormalities in

3T human brain spectra. Normal and abnormal brain
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spectra are simulated, similarly to Lee and Kim38. Eight

different classes of spectra are generated that are abnor-

mal in SNR, linewidth, a single metabolite concentration,

multiple metabolites concentrations (9), or all factors

combined. Additionally, spectra that contain ghosting,

residual water, or residual lipid artifacts are simulated

with the help of phantom data. After training the GAN on

normal spectra only, latent space mapping is performed.

This mapping is done with a loss function containing a

dissimilarity term that compares the generator output

with the input spectra, and a discriminator term that uses

feature matching from the second last layer of the discrim-

inator. The classification between normal and abnormal

spectra is performed with a 2D threshold using NMSE

and the standard deviation of the spectra. Results show

over 80% accuracy for some abnormalities such as SNR

and N-acetylaspartate (NAA) concentration. Addition-

ally, the GAN also detects ghosting, residual water, and

residual lipid artifacts without using those spectra in the

training phase. However, the model cannot accurately

detect abnormalities in linewidth and low-concentrated

metabolites with accuracies of around 50%.

4.2 Quantification

Quantification aims at converting processed MRS

spectra/FIDs into specific metabolite concentration esti-

mates. Traditionally, model-based methods employed

for metabolite quantification include linear combination

model fitting, peak fitting, and peak integration82,83.

An early ML-based quantification approach is intro-

duced by Das et al.44 where they propose a RDF

regression method. The proposed model is developed

with different combinations of artificial spectra and in-

vivo spectra. The RDF consists of a set of binary trees

with splits based on random subsets of the feature vari-

ables on which the forest is subsequently trained. The

trees of the RDF are trained using piece-wise linear

regression over the input spectrum outputting metabolite

concentration estimates, followed by taking the weighted

average of the predictions from each tree to obtain a

single output estimate. Results show that the RDF tech-

nique has similar performance as LCModel and could

therefore be used in combination with LCModel to assist

with the quantification of noisy spectra and enable faster

convergence.

Hatami et al.45 propose a supervised CNN model

for metabolite quantification which is able to cover 20

different metabolites and a macromolecule signal. The

CNN takes real and imaginary parts of the spectra as

a two-channel input and outputs concentrations of all

metabolites of interest. A training and test with GT

concentrations are obtained by simulating spectra based

on an MRS signal model. To evaluate the accuracy of the

quantification model, the symmetric MAPE (SMAPE)

over the whole test set is calculated and compared with

the performance of the model-based QUEST84 method

and the previously mentioned RDF regression algorithm

from Das et al.44. The proposed CNN outperforms the

other methods with and without the addition of noise.

Shamaei et al.48 investigate the use of a CNN which

used a wavelet scattering transformation to extract fea-

tures from the MRS signal. The extracted features are

fed into a fully connected feed-forward NN to predict

the relative amplitudes of the metabolite basis spectra,

which can be used for absolute quantification. For train-

ing and evaluation, multiple datasets are simulated by

using a signal-based model and uniform sampling of its

parameters. Their model shows better performance, in

terms of SMAPE, compared to QUEST and similar per-

formance as the model of Hatami et al.45. Additionally,

the wavelet scattering CNN shows robustness against

metabolite phase changes and nuisance signals, such as

macromolecules.

Gurbani et al.46 use a CEMD for spectral fitting.

This two-step unsupervised DL approach takes the real

part of the spectrum as an input. During the first

encoder-decoder step, a spectrum is mapped to a lower-

dimensional space and a baseline is reconstructed using

a wavelet reconstruction decoder. The resulting baseline

is subtracted from the input spectrum and fed into the

second encoder-decoder network, which is used to recon-

struct the spectral lineshape, and therefore the fitting

parameters for the metabolites of interest. Three metabo-

lites are considered including choline (Cho), Cr, and NAA.

The final CEMD model is also included in a pipeline for

creating whole-brain metabolite maps for patients with

glioblastoma and is compared with MIDAS85. Results

show that both methods have similar fitting performance

and the Cho/NAA maps created by the CEMD have a

Dice score of 0.72 when compared to MIDAS.

Lee and Kim47 propose a CNN architecture to quan-

tify metabolite concentrations. Their approach consists

of a designated CNN per metabolite, taking the real part

of a spectrum as input to estimate the corresponding

metabolite spectrum. The actual quantification of the

metabolites is then obtained by computing the areas of

the known spectral regions relative to the methyl signal

of total creatine (Cr + phosphocreatine (PCr)) (tCr).

The results for the proposed quantification approach

show a well-performing algorithm for the completely syn-

thetic scenarios (i.e. MAPE of 1.92% and 2.56% for the

methyl (∼ 3.0 ppm) and methylene (∼ 3.9 ppm) peaks

for the reference metabolite tCr). For the simulated spec-

tra using metabolite phantoms and in-vivo baselines the
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mean MAPE is increased as depicted above and ranged

from 14.79 ± 11.12% to 23.07 ± 16.36% over the major

metabolites.

Similarly, Iqbal et al.28 propose a method with a des-

ignated NN per metabolite implemented using U-Nets.

Their approach takes the real, imaginary, and magni-

tude information of a fully sampled L-COSY spectrum

as input and outputs the magnitude spectrum for each

of the seventeen metabolites. The authors observe an

increase in error for both degrading SNR and higher

water signal amplitude. Nonetheless, the model shows

accurate quantification of the metabolites, even for low

concentrations.

Rizzo et al.49 compare MRS quantification using

various CNN models, input types, and learning meth-

ods. They use a simulated artifact-free dataset with

GT concentrations to enable fair comparison with stan-

dard model fitting. Results indicate that 2D spectrogram

inputs outperform 1D frequency domain inputs and that

including a water reference peak improves performance.

The best model is a heterogeneous ensemble combin-

ing 1D and 2D inputs while increasing dataset size and

applying active learning strategies do not significantly

improve performance. However, DL-based quantification

still underperforms compared to standard model fitting

and is highly biased toward training data when SNR is

low.

Schmid et al.50 propose a DL-based peak detection

method as part of classical peak fitting. A simulated

dataset, including various distortions, is used for training.

Their CNN model with LSTM blocks outputs classes

(baseline, narrow peak, or broad peak) and values for

the peak widths. Input spectra are dynamically scaled to

enhance local contrast and peak labels are acquired with

an automatic labeling procedure. The outputs are used

to fix the number of peaks and initialize the peak width

values for a classical peak fitting algorithm. Evaluations

on simulated and experimental data show high scores on

picking accuracy, spectral reconstruction, and sparsity

of the peak selection. Their method outperforms using

manual peak picking in terms of mean absolute error

(MAE), especially in crowded regions (i.e. 82% lower

MAE). The authors state that their method, although

optimized for high-field proton spectroscopy, is adaptable

to different domains.

Shamaei at al.51 implements a physics-informed DL

method to quantify simulated spectra and in-vivo spec-

tra from the Big GABA repository78. They use a CEMD

architecture with an encoder that outputs parameters

for the signal-based model decoder. This decoder uses

a metabolite basis set and a numeric, parameterized, or

regulated parameterized macromolecule (MM) signal con-

tribution as prior knowledge. Their experiments include

the investigation of different architectures for the encoder,

the use of different MM models, and different dataset

sizes. Results show comparable performance to tradi-

tional quantification methods and the ability to use this

DL approach for in-vivo data, with best performances

for shallow CNN encoders and minimum dataset sizes

of 12,000 samples. Additionally, a numerical MM signal

is favorable above parameterized and regulated param-

eterized MM models. Due to the unsupervised training

approach and the significant reduction in computation

time, this method could be used as a faster alternative

to quantify large, in-vivo MRS datasets.

4.3 Uncertainty Measurement

Uncertainty measurements of metabolite concentration

estimates, such as the Cramér-Rao lower bound (CRLB)

or the CRLB% are crucial for assuring reliable results,

yet for data-driven methods such measures are generally

biased and alternative metrics are difficult to validate.

Lee and Kim47 propose a CNN-based approach to

quantify metabolite concentrations and simultaneously

obtain an uncertainty estimate for the output spectra.

The approach is developed with simulated rat brain spec-

tra and is further evaluated using phantom data and

in-vivo rat brain spectra. The authors obtain a mea-

surement uncertainty with respect to SNR, linewidth,

and signal-to-background ratio (SBR) by constructing an

uncertainty measurement database from the training data.

The SNR and linewidth are estimated from the input

spectrum, specifically from total N-acetylaspartate (NAA

+ N-acetylaspartylglutamate (NAAG)) (tNAA), while

the SBR of each metabolite is measured from the pre-

dicted metabolite spectra. Then a three dimensional (3D)

space of the quantitative errors is computed and stored

for each target metabolite as a function of the SNR,

linewidth, and SBR. The estimated quantification uncer-

tainty of the proposed method is highly correlated with

the actual errors obtained in a purely simulated scenario

(i.e. 0.81 ± 0.13; 0.88 ± 0.09 for 15 major metabolites).

The correlation predicted error and GT error for the sim-

ulated spectra using metabolite phantoms and in-vivo

baselines are slightly lower (i.e. 0.7 or higher (0.78± 0.05)

and statistically significant for all 15 major metabolites).

In another work of Lee and Kim52, they propose

an alternative CNN architecture and training procedure

to obtain both an estimate of metabolite concentra-

tions and their uncertainties. Using Monte Carlo dropout

(MCDO)86 and a variance leveraging loss function based

on the log-likelihood87 both epistemic (model) and

aleatoric (data) uncertainty estimates are obtained for

each metabolite concentration. The CNN is trained
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with simulated spectra, further tested with in-vivo data,

and shows comparable performance to model-based

alternatives such as LCModel.

The work of Rizzo et al.53 investigates the reliability

of DL-based quantification and compared it to common

model fitting methods. For that purpose, they design a

CNN taking spectrograms as input and outputting nor-

malized metabolite concentration estimates. In a similar

fashion to Lee et al.52 the authors use MCDO for epis-

temic (model) uncertainty and metrics based on bias and

spread of the predicted concentration distribution for

aleatoric (data) uncertainty information. The results indi-

cate that the CNN’s predictions tend towards the mean

of the test data in cases with high uncertainty, indicating

the model is biased. Meanwhile, model fitting methods

show on average to be unbiased.

4.4 Classification

Classification in MRS and MRSI data is important for

clinical applications in terms of diagnosis and disease mon-

itoring. Instead of using metabolite concentrations, ML

methods can be trained to perform direct classification.

In a multi-class pediatric brain tumor classification

problem, Zarinabad et al.54 show that various ML meth-

ods can distinguish between three different tumor classes.

An unbalanced dataset (in-vivo, 1.5T) is used in combi-

nation with borderline synthetic minority oversampling

technique (bSMOTE) (based on the synthetic minor-

ity oversampling technique (SMOTE) algorithm88) to

increase classification performance. The trained classifiers

consist of a RDF classifier with an adaptive number of

trees and four different AdaBoostM1 algorithms using

different weak learners: naive Bayes, SVM, NN and LDA.

Classification is done by either using the full spectra

or the metabolite concentrations quantified by TAR-

QUIN89. Oversampling the minority class with bSMOTE

results in better classification performances of the trained

classifiers, both for concentrations and spectral inputs.

The best balanced accuracy rates are 0.93 and 0.90 for

concentrations and spectral inputs respectively, with dif-

ferent combinations of classifiers and oversampling rates

possible.

A similar classification problem is investigated in a

subsequent study from Zarinabad et al.55. However, the

spectra are acquired on 3T scanners from four differ-

ent hospitals. The tested classification algorithms are

LDA, SVM and RDF approaches and bSMOTE is used to

account for the class imbalance. PCA is performed on the

metabolite profiles to extract four principal components

which are used as input for the classification algorithms.

The results show a maximum balanced accuracy of

0.86 when using SVM as a classification method, which

compares favorably with a previous 1.5T multi-center

study90.

For the same multiclass tumor classification, Zhao

et al.57 propose to add metabolite selection. This study

compares PCA and multiclass receiver operating char-

acteristic (ROC) as metabolite selection methods for

training ML classifiers: LDA, k-nearest neighbors, naive

Bayes, NN and SVM. The classification with three tumor

classes is done for both 1.5T and 3T SVS data from

multiple sites and oversampling for minority classes is

done using the SMOTE algorithm. Final classification

accuracy is determined using k-fold and leave-one-out

cross-validation. Metabolite selection using multiclass

ROC shows a higher accuracy compared to PCA with

the highest balanced classification accuracy of 85% for

the 1.5T data with SVM and 75% for the 3T data with

LDA. A more transparent and explainable tool for diag-

nosis is obtained by selection of metabolites for ML-based

classification.

Dikaios56 trains three different ML methods to differ-

entiate metastasis from glioblastoma brain tumors. The

models include SVM, MLP, and CNN. Different versions

of the models with varying hyperparameters and/or lay-

ers are tested on four different datasets consisting of real

GE spectra with additional noise, real Philips spectra

with additional noise, synthetic GE spectra, and synthetic

Philips spectra. A total of 12 models are trained using

long TE, short TE, and concatenations of both versions

of the spectra. Evaluation of the results, in terms of ROC-

AUC and accuracy, shows the best performance for the

1D CNN when using synthetic data and the concatenated

echo times (> 90% accuracy).

5 ARTIFICIAL DATA GENERATION

Accessing in-vivo MRS/MRSI data is limited due to time-

consuming acquisitions, non-standardized methods91, and

privacy concerns. To overcome this limitation, artificial

data generation is used for developing ML applications.

All previously discussed studies, containing artificial data,

use non-ML based generation methods like data augmen-

tation and model-based simulation. Data augmentation

is a method that artificially increases the size and vari-

ety of the used dataset by applying transformations to

real samples. On the other hand, model-based simula-

tion involves sampling the parameters of a parametric

model to generate MRS data, which is essentially an

inverse use of signal-based fitting models. While the con-

cepts of artificial data generation are the same, the exact

implementation varies a lot per study.
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ML methods can also be applied for artificial data

generation itself. The work of Olliverre et al.58 focuses

on generative models for creating MRS spectra. This

study compares three different models (GAN, deep con-

volutional GAN (DCGAN), and pairwise mixture model

(PMM)92) on their ability to generate MRS spectra for

three classes: healthy, low-grade and high-grade tissue.

The models are trained on a dataset consisting of 137,

1.5T PRESS acquired in-vivo spectra. The GAN model

uses a generator and discriminator with fully connected

layers and the DCGAN uses a deeper architecture, which

generally requires more data. The DCGAN is therefore

trained by using the full training dataset as batch size

with the addition of batch normalization to deal with

the relatively small dataset. All models are trained on

all three tissue types separately and the quality of the

artificially generated data is tested by training a RDF

classifier. Results show that datasets generated by the

GAN and PMM are able to train a RDF classifier to the

same level as using real MRS data. The DCGAN gener-

ated data has lower performance due to the small dataset

size that underutilizes the potential of deep learning.

6 CONCLUSION & OUTLOOK

This review highlights recent ML studies within the field

of proton MRS, focusing primarily on processing and anal-

ysis of MRS spectra and MRSI images with less attention

on data acquisition. Although some studies have applied

ML to volume selection for SVS and shimming, other

aspects of data acquisition (e.g., pulse sequence design,

suppression techniques, and excitation area) have so far

been disregarded. Due to the hardware-dependent nature

of such applications, they are not only more difficult to

integrate, but also to develop and test. Meanwhile, topics

like quality assurance, quantification, and classification

are more commonly addressed. Through the ability to

simulate processed spectra or to rely on large databases

for training data, such ML models are more straightfor-

ward to develop. In the future, more acquisition-oriented

simulations could bridge this gap.

Recent ML studies focus on DL model types instead

of classical ML methods like SVM, RDF, LDA, or PCA.

Table 1 reveals that the most commonly used model

type is a CNN. Additionally, most autoencoders, U-Nets,

and ensemble model types also include convolutional lay-

ers. CNNs are widely adapted in computer vision and

medical imaging93,94 with their benefits of weight shar-

ing, simultaneously extracting features and performing

classification, and easy implementation into large-scale

networks95. While recent studies from Rizzo et al.49 and

Shamaei et al.51 compare different model architectures,

more comparison studies are still missing. Future work

should focus on testing different and new model types like

transformers that have shown potential in other medical

imaging fields96. These types of studies can aid in finding

the best practices for MRS and MRSI applications. As

the field of ML rapidly evolves, it is important to keep

up-to-date with new developments and investigate their

role in MRS and other spectroscopy domains.

Section 5 mentions that many studies use different

techniques to generate artificial data to develop their

ML methods, making the comparability between different

studies very challenging. Also, significant performance

drops are observed when models are trained with artifi-

cial data and tested on in-vivo data, showing difficulties

in transferability from artificial data to in-vivo data. This

stems not only from lacking generalization capabilities of

the ML methods, but also from the difficulty of accurately

replicating in-vivo data through simulation or synthesis.

While metabolite signals are well understood using den-

sity matrix simulations, other signal contributions, like

macromolecules, water/fat residuals, and other artifacts,

remain challenging to simulate. Therefore, efforts that

investigate and standardize (artificial) data generation,

as well as augmentation techniques, are crucial for future

research.

ML methods rely on their training data to learn mean-

ingful tasks and are inherently biased towards this data.

Without preventive or predictive measures there are no

guarantees for the model’s performance for inputs outside

of this distribution97. Furthermore, the model’s output

might even collapse to the mean of its target distribu-

tion for mismatched inputs97. In a clinical setting, such

behaviors need to be detected and removed. Reliable and

broadly applicable uncertainty measures for ML predic-

tion are therefore crucial for or clinical applicability of

ML in MRS. Additionally, deploying hybrid models (com-

bined model-based and data-driven systems) can allow

ML contributions to be leveraged by physics-informed

models that behave unbiased and have guarantees on

their estimates98.

The clinical utility of ML applications in MRS and

MRSI is one of the most important aspects of this research

field. Attempts to decrease human-expert involvement,

decrease acquisition time, and increase robustness and

generalizability of existing MRS tools are therefore essen-

tial. ML methods should also be easy to interpret by

clinicians to be useful in clinical workflows. While ML in

MRS and MRSI is still in the early stages, the discussed

studies show great potential for clinical adoption with

plenty of future research possibilities.
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INTERPRET Decision-Support System Version 3.0 for

Evaluation of Magnetic Resonance Spectroscopy Data

from Human Brain Tumours and Other Abnormal Brain

Masses. BMC Bioinformatics. 2010;11(1):581.

81. Julia-Sape M., Lurgi M., Mier M., et al. Strategies for

Annotation and Curation of Translational Databases:

The eTUMOUR Project. Database. 2012;2012(0):bas035-

bas035.

82. Vanhamme Leentie, Sundin Tomas, Hecke Paul Van,

Huffel Sabine Van. MR Spectroscopy Quantitation: A

Review of Time-Domain Methods. NMR in Biomedicine.

2001;14(4):233–246.

83. Poullet Jean-Baptiste, Sima Diana M., Van Huffel Sabine.

MRS Signal Quantitation: A Review of Time- and

Frequency-Domain Methods. Journal of Magnetic Reso-

nance. 2008;195(2):134–144.

84. Ratiney H., Sdika M., Coenradie Y., Cavassila S.,

Ormondt D., Graveron-Demilly D.. Time-Domain Semi-

Parametric Estimation Based on a Metabolite Basis Set.

NMR in Biomedicine. 2005;18(1):1–13.

85. Maudsley A.A., Domenig C., Govind V., et al. Mapping

of Brain Metabolite Distributions by Volumetric Proton

MR Spectroscopic Imaging (MRSI). Magnetic Resonance

in Medicine. 2009;61(3):548–559.

86. Gal Yarin, Ghahramani Zoubin. Dropout as a Bayesian

Approximation: Representing Model Uncertainty in Deep

Learning. 2016.

87. Kendall Alex, Gal Yarin. What Uncertainties Do We Need

in Bayesian Deep Learning for Computer Vision?. 2017;.

88. Chawla N. V., Bowyer K. W., Hall L. O., Kegelmeyer

W. P.. SMOTE: Synthetic Minority Over-sampling

Technique. Journal of Artificial Intelligence Research.

2002;16:321–357.

89. Wilson Martin, Reynolds Greg, Kauppinen Risto A.,

Arvanitis Theodoros N., Peet Andrew C.. A Constrained

Least-Squares Approach to the Automated Quantita-

tion of in Vivo 1 H Magnetic Resonance Spectroscopy

Data: Automated Quantitation of In Vivo 1 H MRS Data.

Magnetic Resonance in Medicine. 2011;65(1):1–12.

90. Vicente Javier, Fuster-Garcia Elies, Tortajada Salvador, et

al. Accurate Classification of Childhood Brain Tumours by

in Vivo 1HMRS - a Multi-Centre Study. European Journal

of Cancer (Oxford, England: 1990). 2013;49(3):658–667.

91. Lin Alexander, Andronesi Ovidiu, Bogner Wolfgang, et al.

Minimum Reporting Standards for in Vivo Magnetic Res-

onance Spectroscopy (MRSinMRS): Experts’ Consensus

Recommendations. NMR in Biomedicine. 2021;34(5).

92. Olliverre Nathan, Asad Muhammad, Yang Guang, Howe

Franklyn, Slabaugh Gregory. Pairwise Mixture Model

for Unmixing Partial Volume Effect in Multi-Voxel MR

Spectroscopy of Brain Tumour Patients. In: :449–461SPIE;

2017.

93. Soffer Shelly, Ben-Cohen Avi, Shimon Orit, Amitai

Michal Marianne, Greenspan Hayit, Klang Eyal. Con-

volutional Neural Networks for Radiologic Images: A

Radiologist’s Guide. Radiology. 2019;290(3):590–606.

94. Bhatt Dulari, Patel Chirag, Talsania Hardik, et al. CNN

Variants for Computer Vision: History, Architecture,

Application, Challenges and Future Scope. Electronics.

2021;10(20):2470.

95. Alzubaidi Laith, Zhang Jinglan, Humaidi Amjad J., et al.

Review of Deep Learning: Concepts, CNN Architectures,

Challenges, Applications, Future Directions. Journal of

Big Data. 2021;8(1):53.

96. Li Jun, Chen Junyu, Tang Yucheng, Wang Ce, Landman

Bennett A., Zhou S. Kevin. Transforming Medical Imag-

ing with Transformers? A Comparative Review of Key

Properties, Current Progresses, and Future Perspectives.

Medical Image Analysis. 2023;85:102762.

97. Carlini Nicholas, Wagner David. Towards Evaluating the

Robustness of Neural Networks. In: :39–57; 2017.

98. Shlezinger Nir, Whang Jay, Eldar Yonina C., Dimakis

Alexandros G.. Model-Based Deep Learning. Proceedings

of the IEEE. 2023;:1–35.

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106


	A Review of Machine Learning Applications for the Proton Magnetic Resonance Spectroscopy Workflow
	Abstract
	Introduction
	Literature Search
	MRS Workflow

	Data Acquisition
	Volume Selection
	Shimming

	Processing
	Reconstruction
	Spectral Denoising
	Super-Resolution MRSI
	Frequency & Phase Correction
	Ghosting Artifact Removal
	General Artifact Removal

	Analysis
	Quality Assurance
	Quantification
	Uncertainty Measurement
	Classification

	Artificial Data Generation
	Conclusion & Outlook
	Acknowledgments
	ORCID
	REFERENCES


